On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

نویسندگان

  • Ali Karaisa Department of Mathematics-Computer Sciences, Faculty of Sciences, Necmettin Erbakan University Meram Campus, 42090 Meran, Konya, Turkey
  • Khursheed Ansari Department of Mathematics, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
چکیده مقاله:

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Lip$_{M}(alpha )$. Moreover, we also discuss convergence and rate of approximation in weighted spaces and weighted statistical approximation properties of the sequence of positive linear operators defined by us.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation by Chlodowsky type Jakimovski-Leviatan operators

s at ICCAM 2012 Approximation by Chlodowsky type Jakimovski-Leviatan operators Ibrahim BÜYÜKYAZICI Ankara University Tandogan, Ankara Turkey [email protected] Joint work with: H. TANBERKAN, Ç.ATAKUT, S. KIRCI SERENBAY We introduce a generalization of the Jakimovski-Leviatan operators constructed by A.Jakimovski and D. Leviatan and the theorems on convergence and the degree of convergence a...

متن کامل

The approximation of bivariate Chlodowsky-Szász-Kantorovich-Charlier-type operators

In this paper, we introduce a bivariate Kantorovich variant of combination of Szász and Chlodowsky operators based on Charlier polynomials. Then, we study local approximation properties for these operators. Also, we estimate the approximation order in terms of Peetre's K-functional and partial moduli of continuity. Furthermore, we introduce the associated GBS-case (Generalized Boolean Sum) of t...

متن کامل

Blending Type Approximation by Bernstein-durrmeyer Type Operators

In this note, we introduce the Durrmeyer variant of Stancu operators that preserve the constant functions depending on non-negative parameters. We give a global approximation theorem in terms of the Ditzian-Totik modulus of smoothness, a Voronovskaja type theorem and a local approximation theorem by means of second order modulus of continuity. Also, we obtain the rate of approximation for absol...

متن کامل

King Type modification of Bernstein-Chlodowsky Operators based on q-integers

In this paper we first introduce the King type modification of q-Bernstein-Chlodowsky operators, then we examine the rate of convergence of these operators by means of modulus of continuity and with the help of the functions of Lipschitz class. We proved that the error estimation of this modification is better than that of classical q-Bernstein-Chlodowsky operators whenever 0 ≤ x ≤ bn 2[n]+1 . ...

متن کامل

Pointwise approximation by Bernstein type operators in mobile interval

Keywords: Bernstein operators Pointwise approximation Rate of convergence a b s t r a c t In the present paper, we study pointwise approximation by Bernstein–Durrmeyer type operators in the mobile interval x 2 0; 1 À 1 nþ1 h i , with use of Peetre's K-functional and x 2 u k ðf ; tÞ ð0 6 k 6 1Þ, we give its properties and obtain the direct and inverse theorems for these operators.

متن کامل

On simultaneous approximation for some modified Bernstein-type operators

for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a certain index set. For α = β = 0, In = {0}, this definition reduces to the BernsteinDurrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1, In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as Pn(f ,x...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 2

صفحات  181- 200

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023